Clinical Concept Extraction for Document-Level Coding

Sarah Wiegreffe¹, Edward Choi^{1*}, Sherry Yan², Jimeng Sun¹, Jacob Eisenstein¹

¹Georgia Institute of Technology ²Sutter Health *Current Affiliation: Google Al

Summary

- Bridging rule-based and learning-based systems is an important direction for clinical NLP.
- We propose to use information extracted by Apache cTAKES from ICU discharge summaries to improve the document-level ICD-coding task.
- In two settings, cTAKES annotations do not improve downstream performance.
 - Text is rich.
 - Existing state-of-the-art neural baselines seem to do well at extracting relevant information.

Motivation

- Despite advances in neural modeling of clinical text, information extraction approaches are ubiquitous in practice.
- Clinical IE systems provide standardization, and encode a lot of cheap-to-obtain domain knowledge.
 - Clinical text is full of non-standard abbreviations, misspellings, and a large vocabulary.
 - Standardizing rare words may help to predict rare labels.
- Goal: to bridge gap between IE and state-of-the-art neural models.

Example cTAKES annotation.

Experiment #1: Data Augmentation

- Document-level coding task = predicting visit-level ICD codes from MIMIC-III discharge summaries.
 - CAML model as baseline (1D CNN + label-wise attention).¹
- Perform concept extraction using **Apache cTAKES**.
- Treat extracted concepts as **features**.
- Augment existing word embeddings with **concept embeddings**.
 - via learned combination function
 - trained end-to-end
 - Leverage ontology structure

Experiment #2: Multi-Task Learning

- Treat extracted concepts as labels.
- Hypothesis: cTAKES domain-knowledge will guide shared model weights to more optimal representations.
- Add an auxiliary objective to training
 - To predict the associated cTAKES annotation for annotated word spans.
 - Source of "distant" supervision.
- Experiment with parameter tying at various levels of the jointly-trained architecture.

Results from both experiments

- Overall, concept-augmented models are indistinguishable from the baseline.
 - Leveraging ontology structure results in worse performance.
- Multi-task models fit the auxiliary task well, but decrease in main-task performance.
 - Indication that no effective knowledge transfer occurs.
 - Or that model does not have enough capacity to fit both tasks.

Results of the concept augmentation experiments on the document-level ICD9 coding task. We experiment with both ICD9 and SNOMED cTAKES annotations.

Error Analysis

- Label frequency analysis:
 - concept-augmentation methods do not improve downstream prediction, even for rare labels.
- Ablations:
 - cTAKES' **NER** component seems to recognize relevant positions in the text (annotation sparsity does not cause significant performance loss).
 - Its **ontology mapping** capability (assigning words to concepts) may be the source of error.
- Plot:
 - cTAKES does not mitigate word-level variation as hypothesized.

