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Summary

e Bridging rule-based and learning-based systems is an important
direction for clinical NLP.

e We propose to use information extracted by Apache cTAKES
from ICU discharge summaries to improve the document-level
|CD-coding task.

e |ntwo settings, cTAKES annotations do not improve
downstream performance.

m Textisrich.
m Existing state-of-the-art neural baselines seem to do well
at extracting relevant information.

Sample MIMIC| yecord:

Admission Date: [#%2118-6=-2*%*] Discharge Date: [l = f=ilid == 519.1: ‘Other disease..’
491 :21: ‘Obstructive ../

Date of Birth: Sex: F 518.81: ‘Acute respir..’
486: ‘Pneumonia, orga..’

Service: MICU and then to [**Doctor Last Name **] Medicine ‘276.1: ‘Hyposmolality..’
244.,9: ‘Unspecified h..!

HISTORY OF PRESENT ILLNESS: This is an 8l-year-old female 31.99: ‘Other operati..’

with a history of emphysema (not on home 02), who presents...

Experiment #1: Data Augmentation

e Document-level coding task = predicting visit-level ICD codes
from MIMIC-IIl discharge summaries.
e CAML model as baseline (1D CNN + label-wise attention).!
e Perform concept extraction using Apache cTAKES.
e Treat extracted concepts as features.
e Augment existing word embeddings
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Results from both experiments

e Overall, concept-augmented models are indistinguishable from

the baseline.
m Leveraging ontology structure results in worse
performance.
e Multi-task models fit the auxiliary task well, but decrease in
main-task performance.
m Indication that no effective knowledge transfer occurs.
m Or that model does not have enough capacity to fit both
tasks.
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Motivation

e Despite advances in neural modeling of clinical text,
information extraction approaches are ubiquitous in practice.
e Clinical IE systems provide standardization, and encode a lot of

cheap-to-obtain domain knowledge.
m Clinical text is full of non-standard abbreviations,
misspellings, and a large vocabulary.
m Standardizing rare words may help to predict rare labels.
e Goal: to bridge gap between IE and state-of-the-art neural
models.

SENTENCE: She was instructed to drink 2- 3 cans of liquid supplement to help promote weight gain.
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Example cTAKES annotation.

Experiment #2: Multi-Task Learning

e Treat extracted concepts as labels.
e Hypothesis: cTAKES domain-knowledge will guide shared
model weights to more optimal representations.
e Add an auxiliary objective to training
m To predict the associated cTAKES annotation for
annotated word spans.
m Source of “distant”
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Error Analysis

e Label frequency analysis:

m concept-augmentation methods do not improve

downstream prediction, even for rare labels.
e Ablations:

m cTAKES NER component seems to recognize relevant
positions in the text (annotation sparsity does not cause
significant performance loss).

m Its ontology mapping capability (assigning words to
concepts) may be the source of error.
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as hypothesized.
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