

Attention is not not Explanation

Sarah Wiegreffe* and Yuval Pinter*

@sarahwiegreffe

@yuvalpi

http://github.com/sarahwie/attention

- Can attention weights serve as a form of explanation?
 - o Jain & Wallace 2019, Serrano & Smith 2019

- Can attention weights serve as a form of explanation?
 - o Jain & Wallace 2019, Serrano & Smith 2019

brilliant and moving performances by tom and peter finch

- Can attention weights serve as a form of explanation?
 - o Jain & Wallace 2019, Serrano & Smith 2019

brilliant and moving performances by tom and peter finch

Plausible Explainability

- Rationale generation (Ehsan et al. 2019, Riedl 2019)

- Can attention weights serve as a form of explanation?
 - Jain & Wallace 2019, Serrano & Smith 2019

brilliant and moving performances by tom and peter finch

Plausible Explainability

- Rationale generation (Ehsan et al. 2019, Riedl 2019)

Faithful Explainability

- Understanding correlation between inputs and output (Lipton 2016, Rudin 2018)
- Models' explanations are exclusive

- Can attention weights serve as a form of explanation?
 - Jain & Wallace 2019, Serrano & Smith 2019

brilliant and moving performances by tom and peter finch

Plausible Explainability

- Rationale generation (Ehsan et al. 2019, Riedl 2019)

Faithful Explainability

- Understanding correlation between inputs and output (Lipton 2016, Rudin 2018)
- Models' explanations are exclusive

If Attention is (Faithful) Explanation:

Attention should be a **necessary component** for good performance

If Attention is (Faithful) Explanation:

- Attention should be a necessary component for good performance
- 2. If **trained models** can vary in attention distributions while giving similar predictions, they might be bad for explanation

Necessary

If Attention is (Faithful) Explanation:

- Attention should be a necessary component for good performance
- 2. If **trained models** can vary in attention distributions while giving similar predictions, they might be bad for explanation
- 3. Attention weights should work well in **uncontextualized settings**

Necessary

Hard to manipulate

Work out of context

Necessary

 Attention should be a **necessary component** for good performance

- Diabetes (MIMIC-III)
- Anemia (MIMIC-III)
- IMDb Movie Reviews
- Stanford Sentiment Treebank (SST)
- AG News
- 20 Newsgroups

Searching for Adversarial Models

- 1. Attention should be a **necessary component** for good performance
- 2. If **trained models** can vary in attention distributions while giving similar predictions, they might be bad for explanation

 Total Variation Distance: for comparing class predictions between 2 models

$$ext{TVD}(\hat{y}_1, \hat{y}_2) = rac{1}{2} \sum_{i=1}^{|\mathcal{Y}|} |\hat{y}_{1i} - \hat{y}_{2i}|$$

Measures

Jensen-Shannon Divergence: for comparing 2 distributions

$$\mathrm{JSD}(\alpha_1,\alpha_2) = \frac{1}{2} \, \mathrm{KL}[\alpha_1 \parallel \bar{\alpha}] + \frac{1}{2} \, \mathrm{KL}[\alpha_2 \parallel \bar{\alpha}],$$

where
$$\bar{\alpha} = \frac{\alpha_1 + \alpha_2}{2}$$
.

Adversarial Training

- 1. Train a base model (M_b)
- 2. Train an adversary (M_a) that **minimizes change in prediction scores** from the base model, while *maximizing changes in the learned attention distributions.*

$$\mathcal{L}(\mathcal{M}_a, \mathcal{M}_b)^{(i)} = \text{TVD}(\hat{y}_a^{(i)}, \hat{y}_b^{(i)}) - \lambda \text{ KL}(\boldsymbol{\alpha}_a^{(i)} \parallel \boldsymbol{\alpha}_b^{(i)})$$

Adversarial Training

- 1. Train a base model (M_b)
- 2. Train an adversary (M_a) that **minimizes change in prediction scores** from the base model, while *maximizing changes in the learned attention distributions.*

$$\mathcal{L}(\mathcal{M}_a, \mathcal{M}_b)^{(i)} = ext{TVD}(\hat{y}_a^{(i)}, \hat{y}_b^{(i)}) - \lambda ext{KL}(oldsymbol{lpha}_a^{(i)} \parallel oldsymbol{lpha}_b^{(i)})$$

Hard to manipulate

Comparisons

- Random seed variance
 - Re-running the **base setup** with multiple random seeds to calibrate what we expect for variance in attention weights
- Jain & Wallace (2019)
 - Finding adversarial attention maps by post-hoc tweaking
 - No model trained

- Fast increase in prediction difference = attention scores not easily manipulable
 - Supports use of attention weights for faithful explanation

- Fast increase in prediction difference = attention scores not easily manipulable
 - Supports use of attention weights for faithful explanation

- Slow increase in prediction difference
 - Does not support use of attention weights for faithful explanation

Hard to manipulate

- Slow increase in prediction difference
 - Does not support use of attention weights for faithful explanation

Random seedJ&W untrained tweakingTrained divergence (lambdas)

Probing Attention

- Attention should be a **necessary component** for good performance
- 2. If **trained models** can vary in attention distributions while giving similar predictions, they might be bad for explanation
- Attention weights should work well in uncontextualized settings

Probing Attention

 Treat the learned attention weights as a guide in a non-contextualized, bag-of-word-vectors model

Probing Attention

- Treat the learned
 attention weights as a
 guide in a
 non-contextualized,
 bag-of-word-vectors
 model
- High performance →
 attention scores capture
 relationship between
 inputs and output

Results

LSTM's attention
 weights outperform
 the trained MLP,
 which in turn
 outperforms the
 uniform baseline

Conclusion

• 3 desiderata of attention for "faithful" explanation

Necessary

Hard to manipulate

Work out of context

Conclusion

- 3 desiderata of attention for "faithful" explanation
- 3 methods to measure the utility of attention distributions for faithful explanation

Necessary

Select Meaningful Tasks

Hard to manipulate

Search for Adversaries

Work out of context

Use Attention as Guides

Conclusion

- 3 desiderata of attention for "faithful" explanation
- 3 methods to measure the utility of attention distributions for faithful explanation
- Results showing performance is highly task-dependent

Necessary

Select Meaningful Tasks

Hard to manipulate

Search for Adversaries

Work out of context

Use Attention as Guides

Recommendations

- 1. Use guides to judge token-output correlation
- 2. Use adversarial models to investigate exclusivity
- 3. Calibrate your notion of variance
- 4. Investigate models & tasks where attention is necessary

Code: http://github.com/sarahwie/attention

Thanks!

- Acknowledgements: Yoav Goldberg, Erik Wijmans, Sarthak Jain, Byron Wallace, and members of the Georgia Tech Computational Linguistics Lab, particularly Jacob Eisenstein and Murali Raghu Babu Balusu.
- Yuval Pinter is supported by a Bloomberg Data Science Fellowship.

Twitter: osarahwiegreffe oyuvalpi

Code: http://github.com/sarahwie/attention