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Attention should be a necessary component for good
performance
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Selecting Meaningful Tasks —ecessar

e Diabetes (MIMIC-III)
e Anemia (MIMIC-III)

e |MDb Movie Reviews
e Stanford Sentiment Treebank (SST)

e AG News
e 20 Newsgroups
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Searching for Adversarial Models  Herd o manipuiate

2. If trained models can vary in attention distributions while
giving similar predictions, they might be bad for explanation
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Measures

Hard to manipulate

e Total Variation Distance: for comparing class predictions
between 2 models
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Measures Hard to manipulate

e Jensen-Shannon Divergence: for comparing 2 distributions
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Adversarial Training Hard to manipulate

1. Train a base model (M,)

2. Train an adversary (M ) that minimizes change in
prediction scores from the base model, while maximizing
changes in the learned attention distributions.

L(Ma, Mp)D =T1vDHP, 587) — X kL(@? || a?)
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Adversarial Training Hard to manipulate

1. Train a base model (M,)

2. Train an adversary (M ) that minimizes change in
prediction scores from the base model, while maximizing
changes in the learned attention distributions.
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Compansons Hard to manipulate

e Random seed variance
o Re-running the base setup with multiple random seeds
to calibrate what we expect for variance in attention
weights

e Jain & Wallace (2019)
o Finding adversarial attention maps by post-hoc
tweaking
o No model trained
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Adversarial Results

e Fastincrease in prediction
difference = attention scores
not easily manipulable

o Supports use of
attention weights for
faithful explanation
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Adversarial Results

e Slow increase in prediction
difference

o Does not support use of
attention weights for
faithful explanation
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PfOblng Attentmﬂ Work out of context

3. Attention weights should work well in uncontextualized
settings
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Probing Attention

e Treatthe learned
attention weights as a
guide in a
non-contextualized,
bag-of-word-vectors
model

e High performance —
attention scores capture
relationship between
inputs and output

Work out of context

Prediction Score

Weights
(Imposed)

Affine (rr1 CfLii [ [CLLd

I R I

Embedding NN [N SN SRR

f I I f

the movie was good

i1



Results Work outof context

F1 scores

1

e |LSTM's attention
weights outperform
the trained MLP,

. . .75
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Conclusion

e 3 desiderata of attention for “faithful” explanation

e 3 methods to measure the utility of attention distributions
for faithful explanation

e Results showing performance is highly task-dependent

Necessary Select Meaningful Tasks
Hard to manipulate Search for Adversaries

Work out of context Use Attention as Guides
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Recommendations

1. Use guides to judge token-output correlation
Use adversarial models to investigate exclusivity

Calibrate your notion of variance

S

Investigate models & tasks where attention is necessary

Code;
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http://github.com/sarahwie/Attention

Thanks!
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