Mechanistic?

Here's the image representing "mechanistic interpretability" with a network of interlocking gears,
circuits, and nodes lighting up to convey understanding within a mechanical and neural structure.
Let me know if you'd like any adjustments or additional details!

DALL-E 3 rendition, 11/14/24
Naomi Saphra* and Sarah Wiegreffe*
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h SashaRush &
@srush nlp
| recently asked pre-PhD researchers what area they were most excited

about, and overwhelmingly the answer was "mechanistic

interpretability". Not sure how that happened, but | am interested how it
came about.
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Mechanistic Interpretability is extremely hot- but what is it?
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about, and overwhelmingly the answer was "mechanistic

interpretability". Not sure how that happened, but | am inte
came about.

| still don't totally understand the difference between "mechanistic" and
"non-mechanistic" interpretability but it seems to be mainly a distinction
of the authors' social network?
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| recently asked pre-PhD researchers what area they were
about, and overwhelmingly the answer was "mechanistic
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-4 Andrew Gordon Wilson

* Nathan Benaich & @andrewgwils

@nathanbenaich Did they seem to know much about it and the foundations? I've also

is mechanic interpretability a sexier way of saying int noticed a major increase in interest in this area, and alignment, but |
suspect unfortunately for many it's just trendy buzzwords.

5:52 AM - Jul 28, 2024 - 11.9K Views )
8:11PM - Jan 23, 2024 - 1,866 Views



Timeline

Interpretability
picks up in deep
learning, NLP,

vision

<

2015-2017

movie movie, “ movie

i . )
| lIII | |I 1 = L |

" the ors
ReLurrent LSTM Bi - Directional LSTM

Figure 5: Saliency heatmap for for “I hate the movie .” Each row corresponds to saliency scores for the correspondent
word representation with each grid representing each dimension.
Lietal, 2016
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Overview: 4 Definitions

1. Narrow technical: understanding neural networks through causal mechanisms
implemented by their internal components

2. Broad technical: any research describing the internals of a model
3. Narrow cultural: any research originating from the M|l community

4. Broad cultural: any research in the field of Al—especially LM—interpretability
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Causality is key!

e Causal models are made up of causal mechanisms

Intelligence

e Causal mechanism = a function that transforms some subset of
model variables (causes) into another subset (outcomes or
effects)

o Seethe analogy?

Halpern & Pearl, 2005
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Causality is key!

e Causal models are made up of causal mechanisms

Intelligence

e Causal mechanism = a function that transforms some subset of
model variables (causes) into another subset (outcomes or
effects)

o Seethe analogy?

MI = research that discovers causal mechanisms explaining all or
some part of the change from neural network input to output at the
level of intermediate model representations

Halpern & Pearl, 2005
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Causality is key!

e Example: induction heads
o Question: how does LM predict “B” given “ABABA”?
o Answer:

m Attention heads search for a previous occurrence of “A”
m Other heads then attend to the token that follows it

Random Tokens Repeat of Random Token

Category 40 ids node Stftiction Category 40 ids struction

prefix of attended-to-token Attended-to-token is copied. The corresponding
current token I6GiE is increased for the next r

Olsson et al, 2021
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Causality is key!

e Recent work proposes for an even narrower definition: characterizing a complete,
end-to-end pathway from model inputs to outputs

e Thisdefinitionisn’t yet widely agreed upon

o Inpart because it excludes work like Induction Heads

Geiger et al., 2021, 2024b; Mueller et al., 2024
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Coinage of Mechanistic Interpretability

“...reverse engineering the algorithms implemented by neural networks into
human-understandable mechanisms, often by examining the weights and
activations of neural networks to identify circuits ... that implement particular
behaviors.”

Olah et al. 2020, Elhage et al. 2021, Ml workshop



https://distill.pub/2020/circuits/zoom-in
https://transformer-circuits.pub/2021/framework/index.html
https://icml2024mi.pages.dev/

Coinage of Mechanistic Interpretability

“...reverse engineering the algorithms implemented by neural networks into
human-understandable mechanisms, often by examining the weights and
activations of neural networks to identify circuits ... that implement particular
behaviors.”

MI = any inspection of intermediate model representations or weights

Olah et al. 2020, Elhage et al. 2021, Ml workshop
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Transparency and interpretability is the ability for the decision processes and inner workings of Al
and machine learning systems to be understood by humans or other outside observers.

Present-day machine learning systems are typically not very transparent or interpretable. You can use a
model's output, but the model can't tell you why it made that output. This makes it hard to determine
the cause of biases in ML models.

A prominent subfield of interpretability of neural networks is mechanistic interpretability, which
attempts to understand how neural networks perform the tasks they perform, for example by finding
circuits in transformer models®. This can be contrasted to subfieds of interpretability which seek to
attribute some output to a part of a specific input, such as clarifying which pixels in an input image
caused a computer vision model to output the classification "horse"....
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Clash of Communities

Mechinterp community members rarely attend
*CL or BlackboxNLP, despite outreach.

Yonatan Belinkov

@boknilev
We are interested! #blackboxNLP has been the largest #nlproc
workshop for several years now. And we have an interpretability track in

all main #nlproc confs! Please submit your work to be reviewed in such
venues.

@ Neel Nanda & @NeelNanda5 - Jan 7, 2023
Replying to @NeelNanda5

My (very biased) view is that mech interp is just a really promising and exciting
angle on understanding what's going on inside neural networks, and am fairly
confused by why more academics don't already seem to be interested! Though
more and more are engaging, and this is great.

11:42 AM - Jan 7, 2023 - 14.6K Views

Qs s @ 47 A7

>

QQ Post your reply

g Yonatan Belinkov @boknilev - Jan 7,2023
Even if you disagree with other approaches to interpretability, | think
engagement through common conferences would help the community
grow. @NeelNanda5
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Clash of Communities

Jacob Andreas

Excited to see that it’s that time of the year
again

hen we reinvent probing

§ DanHendrycks @
Al models are not just black boxes or giant inscrutable matrices.

We discover they have interpretable internal representations, and we control
these to influence hallucinations, bias, harmfulness, and whether a LLM lies.

Show more

Controlling Honesty
i

monstrate our ability to manipulate the model’s honesty by tr

sing linear combination. When questioned about the tallest mount;
esty on the left, but we can manipulate it to deceive. Conversely, it defaul
Jut we can control the model to return to be honest, even when prompte

@ Yoav Artzi

Distributional semantics? Reminds me of the "florida" example in the
merlevy_and @yoavgo paper from 2014. Granted, contemporary
LLMs probably do it much better, but the ability is likely not new
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0 Wes Gurnee

Based Wol

vy and Yoe

For spatial representations, we run Llama-2 models on the names of tens of

thousands cities, structures, and natural landmarks around the world, the
USA, and NYC. We then train linear probes on the last token activations to

predict the real latitude and longitudes

of each place.

Q Yonatan Belinkov

Excited to see important work from @andyzou_jiaming, @DanHendrycks
..., on interpreting & controlling language models at representation level,
to improve fairness & safety of LMs.

Unfortunately it fails to engage with a large body of work on these topics
from the past ~5 years.

' Dan Hendrycks &

Al models are not just black boxes or giant inscrutable matrices.

We discover they have interpretable internal representations, and we control
these to influence hallucinations, bias, harmfulness, and whether a LLM lies.

Show more

Controlling Honesty
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/e demonstrate our ability to manipulate the model’s honesty by tra
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ut we can control the model to return to be honest, even when promple

Approach:ottomup Top-down

cltions of neurons
Figure 2: Mechanistic Interpretability (MI) vs. Representation Engincering (RepE). This figure draws
from (Barack & Krakauer, 2021; Wang et al., 2023). Algorithmic and implementational levels are
from Mare's levels of analysis. Loosely,the algorithmic level describes the variables and functions
level describes th the neural
network that execute the algorithmic processes. On the right, we visualize the neural activity of
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implemented by their internal components
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We are all mechanistic now

-=> We canstill be precise about technical methods

€ Anincreased focus on causality is Uﬁ



We are all mechanistic now

=> Ml has brought a lot of excitement, interest, opportunities, and research
findings to the field.

=> We have shared motivations: social responsibility, intellectual curiosity, a
desire to build better NLP systems, and a belief that we should
understand the tools we use.

->  Why not also aim to connect?



