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Natural language technologies have always been developed with the goal to serve humanity. Nevertheless, a reality
where NLP systems (and particularly, large language models) provide measurable value to humans has only existed for
a relatively short time. The abilities of modern language models (LMs) to provide assistance in impactful and pervasive
ways, from writing and information seeking to summarizing and translating information, continue to improve day by
day; these systems have the potential to change the way we live and work in profound ways.

However, adoption and commercialization of LMs are accelerating at a much faster rate than the basic science
underpinning foundational technological innovation. There are critical reliability gaps and adaptation issues that require
concerted research effort to resolve, but which industry labs have largely ignored in favor of fixating on performance.
Downstream users’ needs are not fully served, for example, when models output harmful content, hallucinate nonfactual
information in response to fact-seeking queries, or are convincingly and confidently incorrect– all frequent issues in
the current generation of LMs. However powerful models become, the nature of machine learning is one of prediction
and extrapolation from data, meaning that systems are unlikely to ever be perfect or have reliability and performance
guarantees. We must rigorously study LMs to understand their potentials and pitfalls. Because industrial research is
moving away from an open and shared model of science, the onus is on academic researchers to treat LMs as a true
object of scientific study.

Treating LMs as a true object of scientific study necessitates a deep understanding of how they operate. My work
on explainability and interpretability of LMs makes progress toward this goal at the level of both specific predictions
and broad system behaviors. I build off of this scientific understanding to make LMs more performant, reliable, and
user-friendly. A deep understanding of LMs’ behavior, from the simplest tasks up to the most complex, will enable
the development of the next generation of language modeling technology that better serves the needs of diverse
downstream users. I achieve this goal by pushing to:

1. Build NLP systems that produce useful explanations (§1): Models should generate explanations that users
find useful, i.e., both faithful to the model’s underlying prediction process [1–4] and acceptable [5,6], so users
can know when and whether to trust systems’ predictions.

2. Make NLP systems more interpretable and performant (§2): Model developers should better understand
models’ inner workings [7–12] to prevent unanticipated outcomes. Understanding models’ underlying causal
mechanisms allows us to build systems that are more performant, for example, because we can better prompt
them with textual inputs [9, 11, 13], efficiently update their weights to master a new skill [7], or update their
training data to imbue new knowledge and capabilities [ [8],§3].

My future work (§3) will continue these themes by 1) improving the utility of LM-generated explanations and
reducing their propensity to mislead users in real-world settings; and 2) developing interpretability methods that provide
proper data attribution, enable fine-grained localization and control, and improve safety-critical behaviors. My future
work will thus, in turn, enable the next generation of LMs to more reliably provide factual, personalized, and safe
information to serve users in high-stakes applications such as healthcare, education, and policy.

1 Building NLP Systems that Produce Useful Explanations

It has long been understood that explanation does not exist in a vacuum, but instead is “a three-place predicate: someone
explains something to someone” [14]. In explainable AI, this typically means that an AI system provides explanations
of its predictions to human users. Building explainable systems, therefore, requires solving a communication problem
between AI systems and the people who use them– a problem that can be overcome by generating useful explanations.

What makes an explanation useful? People often fall for the illusion of explanatory depth: that if a model-generated
explanation of behavior appears reasonable, then the model performing the behavior must have done so in a reasonable
manner. In [1], I proposed that useful explanations must be both acceptable to humans and faithful to the model’s
underlying reasoning process (Fig. 1). This bi-criteria view of explanation utility has since been widely adopted and led
to a significant increase in research on faithful, non-deceptive explanation of NLP systems. My research has improved
the ability of NLP systems to produce useful explanations in service of two goals: 1) to determine whether trust in an
AI system is warranted and 2) to build user trust when trust is warranted.

Producing Faithful Explanations of Model Behavior [1–4]: When trust in an AI system is weak, uncertain, or input-
dependent, it is vital to explain model predictions so users can determine when to trust them. Faithful explanations help
human users develop an accurate mental model of an (imperfect) AI system. Humans can then simulate the system’s
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predictions–both correct and incorrect–with this mental model, and calibrate their trust accordingly. I have shown that
effective explanations do, in fact, achieve this purpose [2].

Figure 1: An illustrative “faithfulness
spectrum”. I assess and improve dif-
ferent types of model-generated ex-
planations to be as faithful as possible
to models’ prediction processes.

How can we produce faithful explanations from LMs’ internals? I have pro-
posed 3 means of achieving this at the level of individual predictions (Fig. 1).
Neural network attention mechanisms, a key component of most architectures,
have historically been used to highlight key words and phrases in an input doc-
ument (Fig. 2). But can a single component in isolation faithfully represent the
entire network’s behavior? I contributed a key work to the debate on whether
attention can serve as a faithful explanation by developing a suite of practical
tests [1]. With over 1100 citations and 50 Github stars, this work changed the
research community’s understanding of not only what makes an explana-
tion of an NLP system meaningful, but also to what extent model internals can
provide this meaning. To address my conclusion that not all attention mech-
anisms are faithful, I subsequently proposed an architecture– the natural lan-
guage bottleneck– that produces explanations with faithfulness guarantees [3].
I recently gave an invited keynote at the “Big Picture” retrospective EMNLP
workshop on this line of research, highlighting its continued relevance.

As NLP systems have become more powerful, I have argued for an in-
creased focus on generating more expressive free-form textual explanations
[4,15]. I was correct in this position– free-form explanations have since expe-
rienced a surge in popularity as “chain-of-thought prompting” [16]. But are LMs producing textual explanations using
the same subsets of their parameters to both predict and explain? If they are not, the generated textual explanations will
not be faithful to the model’s prediction process– raising the possibility to deceive and mislead users. I was the first to
quantify how faithfully free-text explanations generated by LMs align with the LMs’ predictions, showing high
parameter sharing between prediction and explanation [4]. For this work, I won the Allen Institute for AI’s outstanding
intern award.

Producing Explanations that are Acceptable and Useful to Users [5,6]: When trust in an AI system is warranted, I
have developed explanations that facilitate users building that trust. For example, in the clinical domain, my state-of-the-
art architecture for the ICD coding task was the first to provide textual explanations for each predicted label [5];
a physician judged these explanations to be informative (Fig. 2). With over 700 citations, this work has majorly
influenced explainable architectures in clinical NLP.

...who sustained a fall at home she was found to 
have a large acute on chronic subdural hematoma 
with extensive midline shift...

E849.0: Home 
accidents

801.26: ...subdural, 
and extradural 
hemorrhage...

Figure 2: My work has provided informative ex-
planations in applications like clinical coding.

Motivated by the success of general-purpose LMs and my predic-
tion that collecting ground truth explanation datasets would become
untenable at scale [15], I was the first to evaluate and improve the
human acceptability of few-shot free-text explanations generated
by LMs such as GPT-3 [6]. I developed an evaluation framework in-
spired by psychology research that has been used extensively in sub-
sequent work (over 130 citations and 30 Github stars). I was also the
first to apply human preference modeling, which relies on more
cost-effective human annotation than explanation writing, to train a
system to select high-quality explanations from an LM, pushing
the state-of-the-art in automated explanation generation.

2 Making NLP Systems More Interpretable and Performant

Closely aligned with my work on producing faithful explanations of LM predictions, a main tenet of my research
program is understanding how LMs function more generally on tasks and skills of importance. Standard benchmark
evaluation is often too coarse-grained to capture nuances of model behavior; unintentional and surprising behaviors
subsequently emerge at deployment time due to a lack of fundamental scientific understanding of LMs’ internal mech-
anisms. Indeed, a consistent theme in my work is discovering that models with similar performance can have vastly
different internal mechanisms [1,10]. My work in model interpretability fills in the gaps that evaluation cannot– not
only increasing scientific understanding of systems [8, 10, 12], but also leading to model improvements through
efficient weight updates [7] and better prompt design [9, 11, 13].
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Figure 3: Two variations of the same
multiple-choice question. LMs must first
select the correct answer string, then out-
put its corresponding symbol. I’ve uncov-
ered the internal mechanisms that models
use to answer these questions robustly.

I use methods centered in causal inference to make controlled in-
terventions (i.e., ablations or substitutions) to neural network LMs.
My work leverages two primary methodologies: behavioral [2,
9, 11, 12] and mechanistic [1, 4, 7, 8, 10].
Behavioral analyses make causal interventions on model inputs: I carefully
construct input queries to test for specific model behaviors. This does not
require access to model parameters, and can thus be used on closed-weight
models. On the contrary, mechanistic analyses (popularly known as “mech-
anistic interpretability”) make causal interventions on model weights and
representations when available, allowing for deeper understanding. My
meta-scientific analysis of mechanistic interpretability makes the case for
why causality is so important [17].

In pursuit of my goal to provide comprehensive interpretations of per-
formant systems in widespread use, I have instantiated my interpretability
research on tasks that represent both fundamental building blocks of com-
plex skills and real-world use cases of LMs. I describe 3 examples below.

How do LMs encode factual and commonsense information? Cor-
rectly answering factual queries and performing commonsense reasoning
about the world are key necessary functionalities of useful LMs. However,
correcting model falsehoods in these domains is still largely accomplished by finetuning: indiscriminately and ineffi-
ciently updating model weights while balancing under- and overfitting. My work [7, 8] provides insight into 1) where
and how information is stored in model weights, 2) how it’s learned during training, and 3) how the findings for 1)
and 2) differ for correct vs. incorrect information. The answers to these questions provide a promising alternative
avenue to fine-tuning: targeted and efficient edits, either to a small subset of model weights [7], or to the training
data [8]. For example, in the commonsense domain, I have shown that models can be efficiently edited to provide
correct plausibility assessments of real-world scenarios. Targeted edits to a model’s early-layer MLP weights, found
using causal interpretability techniques, can outperform fine-tuning at balancing under- and overfitting [7].

Figure 4: Specific attention
heads at late layers of Trans-
former LMs promote the correct
multiple-choice answer (blue);
others either demote the correct
choice or promote the incorrect
choices (red) [10].

How do LMs answer multiple-choice questions? Multiple-choice question an-
swering (MCQA) is a standard benchmark task format for evaluating LM capabil-
ities. However, my work [9] and the works of others have shown that some state-
of-the-art models are not robust to innocuous changes to the input, such as different
symbols or answer choice orderings (Fig. 3). This lack of robustness is at odds with
models capable of doing advanced reasoning, and can erode user trust.

I have demonstrated how performant models answer multiple-choice questions
robustly and provided insight into why weaker models fail. When model weights are
not accessible (such as OpenAI’s), I have leveraged models’ output probability dis-
tributions to determine how models prioritize certain answer choices. While prior
work has argued that models are unfairly penalized when they assign high probabil-
ity to invalid answer choices (termed “surface form competition”), I demonstrated
conclusive evidence that this is not the case in practice by proposing the first math-
ematical formalism that could measure surface form competition’s effects on model
evaluation [9]. I discovered that prompting LMs to predict valid multiple-choice
answer choices sometimes has surprisingly negative effects, demonstrating that in-
context learning cannot always teach the symbol-mapping skill needed to do MCQA.
My findings challenged common practices in LM evaluation and allowing me to
propose best practices for model evaluation.

But what mechanisms exist in models that robustly answer MCQA questions
(such as those in Fig. 3) regardless of the symbols used or the position of the correct
answer? Throughcausal interventions on the internal functions of open-weight LMs,
I found that performant models answer questions in 3 stages, which includes a

phase for adaptation to unusual or out-of-distribution queries [10]. Notably, all of these mechanisms are driven by
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sparse subsets of network components, primarily individual attention heads (Fig. 4), making them good candidates for
targeted intervention and control in future work.

3 Future Research

I have demonstrated that scientific understanding of LMs improves NLP systems, increases their reliability, and can
calibrate human trust, but many open research questions remain that continue to grow in importance as LMs expand in
reach and influence.

Improving Model Reliability by Uncovering how Models Learn Factual Information: LMs are still heavily prone
to producing factually incorrect information (“hallucinating”), even when augmented with external lookup tools. Fac-
tuality is a basic requirement of trustworthy AI systems that requires, to some extent, memorization of training data.
But to what extent? On the flip side, memorizing information like copyrighted data or personal information causes
harm, and generalization from training data is a necessary and desirable property of machine learning models. Current
research largely focuses on either reducing memorization or reducing hallucination; any proposed solution will thus
be suboptimal by increasing the other behavior. Apart from these contradictory goals, methods in the literature to
change model behavior generally remain static: LMs’ weights are updated with computationally intensive fine-tuning
and their behavior customized with finicky and ephemeral retrieval and/or few-shot prompting.

My recent work has discovered a strong correlation between interpretable linear structures for factual recall in LM
representations and the frequency of these facts in the pretraining data [8]. Linearity allows for efficient model steering
and control at inference time; in ongoing work, I am modifying pretraining data to better understand this causal rela-
tionship. I am pursuing a research agenda to answer many critical research questions to both increase LM factuality
and reduce verbatim reproduction of sensitive training data: What makes data desirable vs. undesirable to mem-
orize? How is knowledge represented internally in LM parameters? Finally, how can we efficiently and dynamically
update subsets of model weights to learn and unlearn information, allowing us to simultaneously achieve both goals?

Improving Safety-Critical LM Behaviors such as Refusal: A critical safety capability of LMs is to consistently
identify and refuse to answer dangerous or inappropriate user queries and provide caveats on uncertain re-
sponses. Yet, despite recent advances in training models to refuse to comply or provide uncertainty estimates for their
predictions, models remain both overconfident and brittle to jailbreaking attacks. In recent work, I proposed a taxonomy
of queries that should be refused, arguing that ideal refusal behavior should extend beyond malicious or unsafe queries
to unanswerable ones, while also avoiding over-refusal that can render the system unhelpful [18]. We demonstrated
that fine-tuning does not fully achieve this goal.

Recent interpretability research suggests that models encode concepts like refusal or unanswerability in simple
representational subspaces that can be easily undone at inference time. In the same vein as my work on MCQA,
factual recall, and commonsense reasoning, I will leverage my expertise in mechanistic interpretability to first develop
a deeper understanding of the internal mechanisms underlying refusal and uncertainty expression, and then leverage
this understanding to develop more successful and robust interventions than fine-tuning to ensure these safety-critical
behaviors are deeply and reliably ingrained in LMs.

Explanations for Real-World Applications: Methods building on my work on generating explanations from large
LMs (§1) have experienced a surge in popularity, alongside growing concern over the ease of generating deceptive and
misleading explanations with powerful LMs. However, state-of-the-art explanation faithfulness research lacks contex-
tualization in real-world use cases. I plan to build and test state-of-the-art explainable NLP systems in diverse
applications like healthcare, finance, and education, where explanations that are not faithful to a model’s under-
lying prediction process can have serious consequences. This involves answering research questions such as: how
application-specific are definitions of explanation utility? How can instance-level explanations allow users to generalize
their mental models of AI systems, without causing information overload? Are causal and mechanistic interpretations
of LMs meaningful to lay users?

I additionally plan to research how explainable AI systems can educate and inform policy makers about model op-
erations. I have advised staffers in the Senate Chamber of Commerce and the Washington State Senate’s Environment,
Energy and Technology Committee on explainable AI. Whether or not explanations for AI systems become a legal
requirement, developing technology capable of satisfying the technical requirements of such a policy is my priority.
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